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AESTPSICT 

This report.documents the analytical and experimental studies 

performed under Contract NAS5-9450. Frequency modulation and demodulation 

methods for CW lasers are analyzed in terms of amplitude noise sensitivity. 

Expressions are derived for detector noise limited signal to noise perfor- 

mance. Results of experiments performed with homodyne, optical discrim- 

inator and heterodync detection breadboards are reported. An experimental 

transmitted reference heterodyne detection, angle modulated system is 

described. The modulator utilizes a 45 degree Y cut ADP crystal with 

length to thickness ratio of S. Performance of the experimental bread- 

board over a 300 meter turbulent atmospheric path indicates that the angle 

modulated transmitted reference heterodyne system is insensitive to 

atmospherically induced .noise fluctuations. Improvements in laser frc- 

quency stability are indicated to permit evaluation of broadband mod- 

ulation capability. 
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I. ANALYTICAL STUDY 

A. Modulation of an Optical Carrier 

An objective of this study is to investigate electro-optic methods 

for angle modulation of a CW laser beam. In order to present a uniform 

discussion of techniques implemented dking the contract, introductory 

sections on modulation theory follow. 

1. Phase Modulation 

Consider a time dependent carrier signal of the form: 

e(t) = Ecos(2ffct+0) (1) 

Phase modulation of the signal involves variation in the phase angle, 0, 

of the form: 

e = - K S(t) (2) 

The modulated signal is given by substituting (2) in (1): 

M(t) = E cos 112 fl fc t - K S(t)] (3) 

If the modulation signal, S(t), is normalized such that 1 S(t)max\ = 1; 

K is the modulation index. It is numerically equal to the maximum value 

of phase deviation from the unmodulated state. 

The spectrum of M(t) is obtained by expanding the cosine argument and 

substituting the series expansions for cos KS(t) and sin KS(t). 

M(t) = E [cos (2 fi f,t) cos KS(t) -!- sin (21-t fct) sin KS(t)] (f+a) 

1 



Expanding: 

M(t) = E cos (2 JI fct) -I- E KS(t) sin (2 TC f,t) (4b) 

- E K2S2(t) E K3S3(t) 
2 I 

cos (2 ll fct) - 3' sin (215 f,t) 
. 

+. . . 1 

If K c 4, the spectrum is represented by the first two terms. This modu- 

lation is linear. Let the modulation be of the form: 

s (t) = cos (2 3x fmt) (5) 

Substituting (5) in (4) for K < < 1 and expanding using the relation, 

sin A cos B = l/2 (A + B) + l/2 sin (A - B), 

gives: 

M(t) = E cos (2 fl f,t) 

+ EK 2 [sin 2 J[ (fc + fm) t] + +[sin 2 fl (fc - f,)tl (6) 

The phase modulated wave for small K consists of the carrier plus upper and 

lower sidebands in phase quadrature spaced 2 f apart. n Sideband amplitude 

is reduced by K/2. For large values of K the spectrum becomes more complex 

containing integer harmonics, fc+2f n' fc+3f m' etc. 

2. Frequency Modulation 

A frequency modulated wave is described by the expression: 

M(t) E cos [2 x fct - 2 fi Ds S(t) dtl (7) 

where S(t) is the modulating wave. If S(t) is normalized such that 
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1 SWmxl = 1, the frequency deviation, D, is numerically equal to the 

maximum deviation of the instantaneous frequency from the unmodulated value, 

f 
C’ 

Define quantities as follows: 

In = 1 s S(t) dt 1 max 

R(t) = + l S(t) dt 
m 

K I: 21rD1 m 

Cab) 

(8b) 

(8~) 

Substitution of these quantities permits writing (7) in the form.: 

M(t) = E cos c 2 5( fct - Wt)] (9) 

which is identical to a phase modulated wave where K is the modulation index 

and R(t) is the modulating signal. The spectrum of a frequency modulated 

wave is therefore identical to that of a phase modulated wave. Consider 

a modulating signal of the form 

s(t) = sin 2 fl fmt 

Evaluating terms, 

j- S(t) dt = 1 
2lTf 

cos (2 7t fnt> 

n 

1 
so that: I = 

2Jrf K = D m n f m 

The equivalent phase modulated wave is 

M(t) = E cos [ 2 fl fct - D 
f, 

cos (2 71 fnt)] 

3 

(10) 

(11) 



Bandwidth of the frequency modulated wave is 

B = 2 fm(K+l) = 2 (D+fn) (12) 

Wideband FM is defined by D > > f such that B = 2D; narrow band FM by m 

D < < fm such that B = 2 fm. Note that in the second case the bandwidth 

is identical to the phase modulated case where K < < 1. 

The preceding discussion of phase and frequency modulation 

shows that they are mathematically equivalent. In the case of modulation 

of a CW laser, as studied during this contract, the modulating wave is 

phase modulated on the optical carrier and demodulated by a frequency 

discriminator. It is necessary therefore to compensate the system by 

forming the product of the time integral of the demodulated waveform 

times, 2 II D. 

K R (t) = 2nDJS(t) dt (13) 

In this manner, frequency modulation of the CW laser bean is achieved. 

3. Transverse Pockels Effect 

The method employed for modulation of the optical carrier 

is the transverse Pockels effect in a suitable electro-optic crystal. 

The voltage induced birefringence in a crystal of ordinary index of 

refraction, n 
0’ 

and extraordinary index of refraction, n c, is given by 

b = no - n = ra,b v no3 
e -- 

t 
(14) 
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where: 
v 

t 
is .the applied field 

ra,b is the eledtro-optic constant for 

the propagation plane in the crystal 

The instantaneous phase deviation between mutually orthogonal vectors of 

wavelength AC, after propagating a distance L along the extraordinary 

and ordinary ray axes respectively is: 

A$ = p bL 
C 

Substituting (14) for b: 

h ai = F ra,b V no3 4 
C 

(15) 

Notice that the instantaneous phase deviation is proportional to the 

applied voltage and the length to thickness ratio of the crystal. The 

practical advantage of transverse Pockels effect modulation is the reduc- 

tion in required drive voltage for a fixed phase deviation associated 

with increased modulator crystal length. 

A transverse Pockels effect modulator is shown in figure 1. 

Since one-half of the total retardation is attributed to each axis, i.e. 

the fast axis advances the wave by @ while the slow axis retards the 
2 

0 wave by 2 : and since propagation is along a single axis as shown in 

the figure; the expression for the modulated wave is: 

M(t) = E cos p fi fct - f ra b no 3 t v cos (2 Jt fmt)IJ (17) 
C 9 
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Figure 1. TRANSVERSE POCKELS EFFECT MODULATOR 



This is a phase modulated wave with: 

K=f =f 
'a,b no 

3 L v; 
t R(t) = cos (2 3l fmt) (18) 

m C 

Complexity of the spectrum of the modulated wave, or equivalently the 

maximum frequency deviation is determined by the modulation drive voltage 

on the crystal. A crystal that has a large electro-optic constant and 

good optical properties is desired for a transverse Pockels modulator. 

B. Demodulation of an Optical Carrier 

Techniques for demodulation of a frequency modulated optical 

carrier studied during this contract are coherent mixing, both homodyne 

and heterodyne; and optical discrimination, the birefringent demodulator' 

and the balanced discriminator 2 . Objective of this study is to determine 

the optimum demodulation scheme in terms of noise response. Specifically, 

this means choosing a scheme that permits limiting of the modulated wave 

to remove amplitude noise fluctuations while preserving the phase informa- 

tion. Certain advantages of FM over AM at microwave frequencies are 

derived from the limiting operation that makes the receiver insensitive 

to amplitude noise fluctuations. A system that provides similar per- 

formance at optical frequencies is the objective of this study. The 

evaluation of demodulation methods is based upon this objective. 

1. Harris, S.E., "Demodulation of Phase Modulated L,ight Using 
Birefringent Crystals," Proc. IEEE, Vol. 52, No.7, pp.823-831. 

2. Kaminow, I.P., "Balanced Optical Discriminator", 
Applied Optics, Vol. 3, Nr. 4, pp.507-510. 



1. Homodyne Detection 

Homodyne detection is a special case of heterodyne detection 

in which the local oscillator is an exact replica of the carrier. It 

involves coherent mixing of the signal modulated carrier component with 

an unmodulated carrier component on a suitable square law device. A 

practical method for implementing honodyne detection over a duplex link 

is to combine the signal carrier component and the local oscillator 

component at the transmitter; e.g. as shown in figure 2. The composite 

signal is transmitted to the receiver. 

M I RROR 

fi T&‘iNSVHTTED WAVE 

Figure 2. Optical Homodyne Transmitter 

In the transmitter unit the carrier signal is intensity split 

into two components by an interferometer beamsplitter. One arm of the 

interferometer contains a double pass modulator, the other arm delays the 

local oscillator reference beam. The transmitted wave is described by 



m(t) = El cos [2 x fct - KS(t)] -t E2 cos [2 fl f t - 91 
C (19) 

where the first term is the modulated component, the second term is the 

reference. Square law detection of this signal gives: 

m2(t> = El2 cos 2 [2 I-C fct - KS(t)l + E22 cos2 (2 r[ fct - 0) 

(20) 

+ 2 ElE2 cos [2 fi fct - KS(t)T cos (2 J[ fct - e) 

The squared terms give a DC component and the second harmonic. Using the 

identity cos A + cos B = 2 cos l/2 (A + B) cos l/2 (A-B) the product term 

may be written: 

e(t) = El E2 ~0s [4 fl fct - KS(t) - O] -I- El E2 cos [e - KS(t)] 

(21) 

The second harmonic and DC components are ignored in the detection process. 

If the phase difference between the two waves is an odd integer number of 

quarter wavelengths, i.e: 0 = nR , n = 1, 3, 5 . . . , the difference 
2 

term is 

e'(t) = El E2 sin KS(t) (22) 

For K < < 1, the modulation is recovered. 

e” (t) = El E2 KS (t) (23) 

It is apparent that the homodyne system is sensitive to 

variations in the carrier amplitudes El and E2. Since it is a transmitted 

reference scheme, atmospherically induced phase fluctuations affect both 

9 



components equally and are not detectable. The relative phase angle 8, 

between the two wave components remains constant throughout the propaga- 

tion path so the condition imposed upon it is satisfied at the detector. 

Because the homodyne system is amplitude noise sensitive, it is not con- 

sidered a suitable demodulation method for the purposes of this contract. 

2. Optical Discriminator 

There are two methods of implementing direct optical discrini- 

nation of the frequency modulated optical carrier. These are the bire- 

fringent demodulator and balanced discriminator referenced earlier and 

shown in figures 3 and 4 respectively. Analysis of both demodulation 

methods is identical. In each implementation the frequency modulated 

carrier wave is split into two components with a relative time delay 

inserted between them. The beams are then recombined and square law 

detected. 

The two signal components may be described by 

t 
m(t) = E cos [2 JI fct - 2 II D s S(t) dt] (244 

‘7 
n(t-7) = E cos[2 IX fc(t -7) - 2 fl D St S(t) d t] (24b) 

where T is the relative time delay. Square law detection of the two 

signals yields: 

[m(t) + m (t - ~>3 2 = m2(t) + m2 (t - 7) + 2m (t) m (t - 7) 

(25) 

10 



Figure 3: BIREFRINGENT FM DEMODULATOR 
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Figure 4. BALANCED OPTICAL DISCRIMINATOR 



Consider only the product term, that gives the sum and difference frequen- 

cies. The squared terms give DC and second harmonic components that are 

ignored in the detection process. 

2 m(t) m(t-T) = 2 E2cos[2xfct - 2nDJtS(t) dt] cos E2nfc(t-7)-2fiD[$)dq 

(26) 

Using the identity, cos A cos B = l/2 cos (A+B) + l/2 cos (A-B), and 

dropping the sum term, (26) may be written: 

t 
e(t) = E2cos [2 3c fcT - 2 r[ D l S(t) dt] 

t--r 
(27) 

If 2 fl fcr = NJr; fCT = N; N = 1, 3, 5 then (27) becomes: 
2 4 

le’ (t-1 = E2 sin c2 x D It s(t) dtj 
t-7 

(28) 

Since the modulating wave, S(t), is of the form sin w t, the m 

integral may be evaluated as follows: 

t 

s 
sin w t dt = - cos Wmt + cos (W,t - WmT) 

t-T 
m 

Wm wm 
(29) 

Expanding cos (lu,t - w,~), collecting terns, and multiplying through by 

I-., (29) becomes: 
7 

t 

s 
sin wmt dt = 7 sin wmt(SiE y) - 7 COS wnt ( 

l- cos wrnT 
-1 (30) 

t-T m WmT 

13 



Series expansion of the terms in parentheses gives: 

sin wm7 
2 4 

=I- 
(wrnT > (W,T) _ . . . 

wmT 3' + 5' . . 
Wa) 

1 - cos (UlmT) (nmT brnT ) 3 
= +. . . (31b) 

*mT 2' 4' . . 

For wrn-r < 2.8 radians, where fm = wm is the highest frequency in S(t); an 
2X 

approximation good to within 3 db is: 

s t sin u) tdt w 7 sinw t 
t-T 

m m (32) 

Involved here is an averaging of a sine wave over an interval T. The 

constraint imposed, wrn7 < 2.8, assures that the sine wave amplitude is 

essentially constant over the averaging interval and therefore S(t) may 

be removed from the integral. 

With the above assumption equation (28) may be written: 

I e’ (t> 1 %E2 sin [2fi DT S(t)] (33) 

The sine wave is linear within 10% if 2 fl D T S(t) < or D T S(t) < + 

or D 7 < $, since IS(t) I,, = 1. Therefore: 

1 e' (t) \ Rd 2 n E2 D 7 s(t) (34) 

For sinusoidal modulation, since K = 2fiD - and D T < 1 then 
wm 8' 

wmT < &; which is more restrictive than wrn7 < 2.8 if K> 0.28. 

14 



Note that the detected signal is sensitive to amplitude 

fluctuations of the carrier through the dependence on E2. Further, since 

the detector is a frequency demodulator all frequency fluctuations appear 

in the output through DS(t). The frequency fluctuations are proportional 

to the time derivative of the phase fluctuations, so phase fluctuations 

produce a noise output also. The system does have an amplitude noise 

suppression characteristic at the modulation frequency, w,; however, this 

rejection falls off rapidly at either side of wm. Comparing the optical 

discriminator with homodyne detection, performance is similar if 2rr D T = K 

Homodyne 1 e" (t) 1 ca El E2 K S(t) (23) 

Optical discriminator Ie' (t) \ ';= 2 n E2 D I- S(t) (34) 

Since K = 2 fi D , the condition for similarity of the two systems is 
w m 

equivalently wrn7 = 1. Frequency and phase noise fluctuations do not 

affect the homodyne system however. Because the optical discriminator is 

amplitude noise sensitive it is not considered a suitable demodulation 

method for the purposes of this contract. 

3. Heterodyne Detection 

A third method for demodulating a frequency modulated optical 

carrier is coherent heterodyne detection. This method may be implemented 

with the local oscillator signal generated either at the receiver or at 

the transmitter. In the case of a locally generated reference signal at 

the receiver the problem of matching phase of the two signal wavefronts 

15 



for good mixing action is a difficult task. Phase variation in the differ- 

ence frequency signal generated at various points on the detector may cause 

total loss of signal if the wavefronts are not matched. Atmospherically 

induced phase distortion of the signal carrier may degrade signal perform- 

ance significantly. A transmitted reference scheme for the local oscillator 

signal avoids the phase matching problem since both wavefronts are distorted 

by the intervening medium in an identical manner. If there is good mixing 

action at the transmitter there is good mixing anywhere in the transmitted 

beam. 

A transmitted reference heterodyne system is shown in Figure 5. 

I I 

PoLARl ZEI? 

BEAM H TRANSMITTED 
LASEF: MODULAT01’ -7 COb’iBlNER 

W 
BEAM 

Figure 5. OPTICAL TRANSMITTED REFERENCE HETERODYNE SYSTEM 
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The phase modulated signal carrier and frequency offset local oscillator 

are combined in the beamsplitter and transmitted in a collinear manner 

through the collimating optics. The composite waveform is described by: 

m(t) = El cos p 'IC fct - K S(t)lj + E2 cos p3-t f 
LO t - 83 

(35) 

The first term represents a phase modulated signal carrier, the second 

term represents the local oscillator. Relative phase angle between the 

two signals is 0. Square law detection of the transmitted signal consists 

of the familiar cosine squared terms, that give rise to a DC component 

and the second harmonic, and the product term that gives the sum and 

difference frequencies. The product term is: 

e,(t) = 2 ElE2 cos p JI fct - K S(tfl cos (2 x fLOt - 0) 
(36) 

Using the identity cos A cos B = l/2 cos (A+B) + l/2 cos (A-B),(36) IMY 

be written: 

e,(t) = El E2 cos [2 fi (fc + fLo) t - K S(t) - @] 

+ El E2 cos [2 JI (f 
C 

- fLo) t - K S(t) + e] (37) 

The second term is a phase modulated wave at the difference frequency. 

Since this difference frequency may be adjusted to the microwave region 

it may be amplified and limited to eliminate amplitude noise fluctuations 

and then detected. For a locally generated reference system, 0 may be a 

complex function of the spatial coordinates on the detector photocathode. 

17 



In the case of a transmitted reference system it is a constant. 

The transmitted reference heterodyne detection method is not 

sensitive to amplitude noise fluctuations and is unaffected by atmospheri- 

cally induced phase distortion. For these reasons a transmitted reference 

heterodyne system is chosen for implementation on this contract. Combined 

with a transverse Pockels effect phase modulator, the transmitted reference 

heterodyne detection scheme constitutes a frequency modulated optical 

communications system. 

C. Detector Noise Limited Performance 

The desirability of implementing a transverse Pockels effect modu- 

lator and transmitted reference heterodyne demodulator to obtain an FM 

optical communications system is indicated in the preceding sections of 

this report. It is informative to investigate the signal to noise ratio 

at the output of the first demodulator, optical detector, for various 

modulation schemes. The noise power density is proportional to the average 

power in the signals applied to the first demodulator, which is assumed 

to be a square law device. 

Thus: 
No (f) = k Pavg (38a) 

and L 
n,(t) = k 'avg (38b) 

where P 
avg 

is the average power at the input to the first detector and B 

is the bandwidth of the demodulated wave. In the following discussion 

S(t) or r(t) represents the second modulated wave; i.e., the signal to be 

impressed upon the optical carrier. 

18 



1. DSSC Modulation 

In double side band suppressed carrier modulation the modulated 

wave may be expressed by 

m(t) = s(t) cos 2 Jr fct (39) 

In order to demodulate this wave in a square law detector, a replica of 

the carrier, E cos 2 n fct, must be added as shown in Figure 6. 

Figure 6. DSSC DEMODULATION 

Output of the square law device is 

el (t> = [m(t) f E cos 2 IX fcq2 

= [E + S(ta2 cos2 2 n fct 

by substitution of (39). Expansion of the expression in brackets and 

use of the identity cos2 A = l/2 + l/2 cos 2A gives: 

e,(t) = p2 + 2 E S(t) + S2(t)7 + [ 1 + cos 2 n (2 f,>q 

(41) 

19 



The output is composed of some low frequency terms, p2 + 2 ES(t) + S2(tjl, 

and some amplitude modulation of a carrier of frequency 2 fcF Only the 

low frequency terms are passed by the bandpass filter shown in Figure 6. 

In addition if S(t) has a bandwidth less than an octave; i.e. fH 2 2 fL, 

where f H is the highest frequency in S(t) and fL is the lowest; and since 

S2(t) has a D.C. term and the second harmonics of S(t); then the lowest 

frequency in S2(t) is 2fL which is greater than the highest frequency 

in S(t) which is fH. Thus S2(t) can also be separated from S(t) by the 

bandpass filter. Output of the bandpass filter is therefore: 

e2 (t) = E S(t) (42) 

Let Pm equal the average power in m(t) and Ps equal the average power in 

s(t) l 
Then P = l/2 P m S 

(43) 

and ( ii> PS 

N out = k 
E2P, 

2 (E2+Ps)B = k 
2 (1 +$ B 

(44) 

2 
Figure 7 is a plot of ( ; ) as a function of 1 ; i.e. the ratio of average 

out S 

carrier replica power to average power in the modulated wave. Note that 

increases as E is increased and reaches a maximum value as E 
out 

approaches infinity. Not much practical improvement results, less than 

1 db, if E2 > 4 Ps. Maximum signal to noise is 

[( +, ] 
out max 

= &Es = gm (45) 

20 



Figure 7. SIGNAL/NOISE OUTPUT DSSC DEMODULATION 

2. Envelope Modulation 

Envelope modulation is similar to DSSC modulation except that 

additional carrier is transmitted along with the sidebands. The modulated 

wave is described by 

m(t) 5 [ E + S(tq cos 2 's[ fct (46) 

This expression is identical to that for DSSC modulation at the input to 

the square law detector and the previous results apply with the change 

that the average power in the modulated wave is 

'rn 
= l/2 (E2 + Ps> (47) 

21 



Thus, (44) becomes in this case 

= kE;p; = (2pm - PSP, 
out m k Pm B 

Simplifying 

(i) 
out 

= 3 2 -p, 5 
( i Pm pm 

(484 

(48b) 

The (& is plotted as a function of the ratio of the average signal 

power, PsJ to the average power in the modulated wave, Pm, in figure 8. 

Figure 8. SIGNAL/NOISE OUTPUT ENVELOPE DETECTION 

The maximum signal to noise is 

(49) 
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which is less than (45), for DSSC modulation and occurs when the power 

in the sidebands equals the power in the carrier, i.e. Ps = E2. 

3. Phase Modulation-Heterodyne Detection 
1 

Consider a phase modulated optical carrier described by: 

m(t) = El cos [2 x fct - KS(t)] (50) 

Heterodyne first detection of this signal is accomplished as shown in 

figure (9) by adding a local oscillator signal before the square law 

detector. 

Figure 9. HETERODYNE DETECTION 

Output of the square law device is: 

e,(t) = [m(t) + E2 cos 2 JI fLot] 2 
(51a) 

E1 
2 = cos 2 p n fct - KS(t)l + E22 cos2 (2 n fLot) 

+ 2 El E2 cos (2 x fLo t) cos [ 2 II fct - KS(t)] 

(51b) 
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Applying an argument similar to that used in the DSSC modulation case, 

output of the bandpass filter following the first detector is the 

difference frequency. 

e,(t) = El E2 cos p IC (fc - fLo)t - KS(t)7 (52) 

The output signal to noise is given by the ratio of the difference fre- 

quency average power to the average noise power incident on the detector 

and is: 

(3 out 
= (El E2) 

2 

k(E22+E12) B 

= 

A plot of (tkut versus 2 is shown in Figure 10. 

(53) 

Figure 10. SIGNAL/NOISE HETERODYNE DETECTION 
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The maximum signal to noise is given by: 

Note that this is 3 db larger than envelope modulation. 

4. Angle Modulation - Optical Discriminator 

Consider a frequency modulated wave of the form: 

m(t) = A cos p n fct - 2 R D J' S(t) dg 

The average power in the modulated wave is 

'rn = A2 
2 

(54) 

(55) 

(56) 

In the optical discriminator discussed in section I.B.2., the received wave 

is split into two equal parts, each of amplitude E. One is delayed with 

respect to the other and then summed at the input to the square law device 

as shown in figure 11. 

h-+-T) e,(t> ~.L(t 
- DELAY- 

T =-+ 
) SQUARE LAW 

DETECTOR - FILTER c 

1 

- 
m &) 

Figure 11. OPTICAL DISCRIMINATOR, FREQUENCY MODULATION 
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If the power split is equal, E = A . 

ii- 2 

Each wave component is described respectively by 

m,(t) = E cos p x fct - 2 fi D St S(t) dq Wa) 

t -7 

m,(t) = ml(t - 7) = E cos p fi f,(t - 7) - 2 x Dl S(t) dt] 

(57b) 

Output of the first detector is 

e,(t) = [m,(t) + m2 (tFJ2 

which from previous analysis, (34) is: 

e2(t) * 2 E2 x D T S(t) = A2 nD,r S(t) 

The output signal to noise is: 

(58) 

(59) 

($ = 
A4fi2 D2 i2 P 2fi2 A2 D2~2 P 2 

S = S = (4* D2 72 pS pm (60) 
out k B A212 k B kB 

If s(t) = cos (27r fmt) then Ps = l/2 and 

= 2312D272 Pm = 19.6 D2 72 L Pm 

i-ii- kB 
(61) 

As shown previously, for 10% linearity, D T < l/8; and D 7 -C l/4 to make 

the detector output a non-decreasing function of the input. Thus since, 
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sin (2 SC D 7 cos w,t) = 2 Jl (2 SC D 7) cos w,t - 2 J3(2 'JC D I-)cos Wmt + . . 

(62) 

Jl(x) is a maximum for X = 1.8 and 

2 J1(1.8) =, 2 x 0.582 = 1.164 Thus for D 1.8 7 = 5 = 0.286, maximum 

signal to noise output is 

[( i ) ] max = 0.675 k (63) 
out 

For a phase modulated wave, the analysis differs by the substitution: 

K r (t) = 2 TI D [ S(t) dt (64) 

and hence, the output of the bandpass filter is 

e2 (t> 
A2 = A2 fi D 7 S(t) = j- K .T d r (t) 

dt (65) 

Adding the integrator after the filter as shown in figure 12 gives: 

m(t-71 e, (tl e2 Ct) e3 W 

- OELAY - + - 
SQUARE LAW 4 

7 DETECTOR 
- FILTER --+ INT!3IiP~TOP 

A 

Figure 12. OPTICAL DISCRIMINATOR, PHASE MODULATION 
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e,(t) 
A2 = - K -r r (t) 2 (66) 

This is the signal at the output of the integrator. The noise passes 

through the integrator and since H(f) = L j 2flf ' and 

no2 (t) = Jf2 $;(z)f;f2 = k A2 ~~~ $$ (67a) 

fl 2 (2n>2 fl 

k A2 L-1 1 A2 k B =- 
8 n2 fl f2 = 8fi2fl f2 

since B = f2 - fl 

(67b) 

The signal to noise output therefore is: 

(;I = 
A4K2 .r2Pr = 231~ A2 K2 72 P, fl f2 

out 4.A2 k B 
(68a) 

kB 

831~ flf2 

= 431~ K2 ,r2 fl f2 P, Pm (68b) 
kB 

If r(t) = cos wmt, P, = l/2 and the equivalent D = K fm. In addition if 

$ < -c 1.. f f = f2. , 12 m Under these conditions 
m 

( 
fi Lt 

= 2fi2K2T2f2 'rn 
m kB 

(69) 

For maximum ( g ), D 7 = 0.286 = K fm I- therefore: 

= 2 n2 (0.286)2 Pm = 1.61 P 

kB k: 
(70) 
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Summarizing the analysis presented in this section; expressions 

for maximum signal to noise ratio for several modulation'- demodulation 

schemes considering only noise that is proportional to the average signal 

power incident on the photodetector are determined. The results are 

tabulated in Figure 13. 

Modulation Demodulation Cc+)1 max 
out 

-- -__- 

Phase 

Discriminator 

Direct Video 

Discriminator 

Figure 13. MAXIMUM (;) FOR SELECTED MODULATION SYSTEMS 

These results indicate that considering only detector noise,of the 

systems analyzed double sideband suppressed carrier modulation with 

homodyne detection offers optimum signal to noise performance. It is 

3 db larger than phase modulation with heterodync detection for example. 

Note however that (i) for phase modulation with hetcrodyne detection 

is 3 db larger than envelope modulation with direct video detection. 
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The (3 eXpreSSiOnS are Written in terms of Pm, the average power in the 

modulated wave. If a particular hardware implementation of one of the 

systems causes a variation in Pm as compared to another approach, con- 

clusions drawn from the relationships listed in Figure 13 do not hold. 

For example, transmitted reference homodyne or heterodyne schemes usually 

involve a 3 db loss of modulated wave signal due to the geometry of 

implementation. This is not common in a direct video detection scheme. 

It is not intended that this analysis indicate the best modulation- 

demodulation system for any given application. Objective of this con- 

tract is to analyze an FM optical communications system and compare it 

with other useful techniques. This analysis contributes to that objective. 

D. Effects of Additive Noise Before Detection 

The previous analysis of section I.C. treats system performance 

in terms of noise generated in the square law detector. Another source 

of noise for optical communications systems is additive background noise 

such as direct or reflected sunlight. Normally due to optical and spatial 

filtering, systems are not background noise limited. The analysis of this 

section treats the performance of amplitude and phase modulated systems 

in the presence of additive noise. The noise spectrum is described by 

n(t) = p,(t) cos 2 J[ fct + q,(t) sin 2 JL fct (71) 

where n(t) is bandpass, stationary, white noise of amplitude density No 

and bandwidth B. Under these conditions p,(t) and q,(t) are low pass 
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white noises of amplitude density ANo and bandwidth 5. Further: 

s O3 n2(t) dt = J w p 2 “q 2(t)dt= s m .j:N (f)12df = 2 No2 B 
-00 -co n (t> dt = J-m n -a3 

(72) 

With these definitions the analysis proceeds. 

1. Amplitude Modulation 

Consider a wave amplitude modulated by a signal S(t), 

described as: 
m(t) = A [l + K S(t)l cos 2 fi fct (73) 

where 1 S(t) \,, = 1 and K 5 1. 

The modulated wave plus the additive background noise is 

m(t) + n(t) = p -I- AKS(t) + pn(t)] cos 2 fl fct + qn(t) sin 2 fl fct 

(74) 

If this combined wave is incident upon a square law detector followed 

by a low pass filter, the output of the filter is: 

co(t) = l/2 [[A + AKS(t) + pn(t)12 + qn2(t)j (75a) 

co(t) = l/2 A2 + 2 1 A2K2S2(t) + $ pn2(t) + $ qn2(t) 

+ A2 KS(t) + A p,(t) + AKS(t) p,(t) 

(75b) 
Assume the conditions A > > p,(t) and K < < 1; so that: 

e,(t) e 2 L A2 + A2 KS(t) + A p,(t) = A2[ $ + KS(t) + vj (76) 
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The output consists under these conditions of a DC term, that is ignored, 

the signal, KS(t), and noise, p,(t) . 

A 

2. Phase Modulation 

A phase modulated wave, modulated by a signal S(t) is given by 

(3) 
m(t) = A cos [ 2 fi fct - KS(t)] (3) 

where IS(t),,\ = 1 and K is the phase deviation. The modulated signal 

plus the additive background noise is described by: 

m(t) + n(t) = A cos KS(t) cos 2ti fct i- A sin KS(t) sin 2rc fct 

+ p,(t) cos 2 II fct + q,(t) sin 2 fi fct (77) 

where the expansion cos (A-B) is applied. (77) may be written in the form: 

m(t) + n(t) = v(t) cos [2 It fct - 0(t)] (78) 

where 
112 

v(t) = {[A cos KS(t) + pn(t)7' + p sin KS(t) + qn(tq2J (79) 

and 0 (t) = tan-l [A A sin KS(t) + q,(t) 
COS KS(t) -I- pn(t) ] (80) 

An ideal phase detector has as its output e(t). Since the desired signal 

is KS(t), the noise at the output may be described by 

en(t) = 0 (t) - KS(t) (81) 

Writing tan en(t) = tan 0 (t) - tan KS(t) (82) 
1 + tan 8 (t) tan KS (t) 

which after some manipulation may be written 
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tan en(t) = q,(t) ~0s KS(t) - p,(t) sin KS(t) 
(83) 

A + p,(t) cos KS(t) + q,(t) sin KS(t) 

Hence, ifA>> p,(t) and A > > q,(t) and since cos KS(t) s 1 and sin 

KS(t) s. 1 

tan en(t) 3 4, (t) cos KS(t) - p,(t) sin KS(t) 

A A 

and since tan 8 n < < 1; tan 0,(t) 2 en(t) 

thus en(t) % 4,(t) cos KS (t) - pn(t) sin KS (t) 
A A 

(84) 

(85) 

Since cos2 KS(t) + sin2 KS(t) = 1, and since the spectrum of q,(t) is 

identical to the spectrum of p,(t), (both low pass, white with density 

fi No> and bandwidth 4, it can be shown that the spectrum of A e,(t) 

is low pass, white with density B No, and bandwidth 2. Hence the 

output of the phase detector is: 

e W = KS (t) + en (t) 
A 

where the spectrum of e,(t) is similar to p,(t) or s,(t). 

(86) 

If the phase detector is not an ideal phase detector; i.e. if 

limiting cannot be achieved before the detector so that the output is 

proportional to the input amplitude; the output of the detector is given 

by: 

e,(t) = v (t) 8 (t) = v (t) KS (t) + v (t) en (t) (87) 
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where v (t) is given by (79) which may be expanded to: 

V(t) = {A2 + sbn(t) cos KS (t) + q,(t) sin KS (ta + pn2(t)-kqn2(t)] 
112 

(8% 

Thus if A > > q,(t) and A > > p,(t), v (t) may be written 

v(t) = A[l+ 2 Pn(t) cos KS (t) + 2 $p 
A A 

sin KS(tql'2 
(894 

2A[l + 'n@) cos KS (t) qn(t) sin KS(tu (89b) 
A A 

This indicates that the phase detector without limiting produces noise 

amplitude modulation of the signal output. The degree of modulation is 

inversely proportional to the input signal to noise voltage ratio which is 

assumed to be large. 

3. Comparative Evaluation 

Comparing equations (86) and (76), the detector output for 

optimal phase modulation and amplitude modulation respectively, note that 

if A > > n(t); i.e., if the input signal to noise ratio is large enough; 

both AM and PM have the same output signal to noise ratio for the same 

K and A. However (76) was derived under the condition that K < < 1. If 

this condition is not met the output contains more noise due to the term 

AKS(t) p,(t) which was neglected in comparison to the term A p,(t). No 

restriction of this sort is placed on the derivation of equation (86). 

Therefore as K becomes larger, PM has an advantage over AM, in the 
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presence of additive background noise, for the same K. Obviously if a PM 

system can be achieved, in practice, with a larger value of K than can be 

achieved in an AM system, the PM system has a larger output signal to 

noise ratio for the same input signal to noise ratio. 

II. Experimental Study 

A. 45' Y Cut ADP Modulator 

1. Electra-optic Material 

The transverse Pockels effect is chosen for the electro-optic 

modulator because of the dependence of the phase retardation upon the 

length to thickness ratio (L/t) of the crystal. As discussed in section 

I.A.3. the required drive voltage for a fixed ratardation is inversely 

proportional to the L/t ratio. A modulator with a relatively low drive 

voltage requirement is therefore feasible. There are a variety of electro- 

optic materials suitable for transverse modulators at visible wavelengths. 

Specifically potassium dihydrogen phosphate (KR2P04) and its isomorphs, 

KD2P04 and NH4 H2P04 have found widespread use in laser technology. These 

are class E m crystals that have relatively large linear electro-optic 

coefficients. Values of r41, which determines performance of these 

crystals as transverse modulators, are given in figure 14 . 

3. 
Ott, J. H. and Sliker, T. R. "Linear Electra-Optic Effects in KH2P04 

and its Isomorphs" JOSA, Vol. 54, Nr. 12, pp. 1442-1444. 
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Material 

KH2p04 

m4H2PC4 

Abbreviation Electra-Optic Coefficient r41 

ww 8.77 + 0.14 x lo-l2 m/V 

@W 24.5 f 0.4 x lo-l2 m/V 

XD2p04 WP) _ 8.8 + 0.4 X lo-l2 m/V 

(83% - 92% deuterated) 

Figure 14: Electra-Optic Coefficient, r41, of Selected 

Class 42m Materials at 546 nm. 

Of these materials, ADP is the obvious choice for a transverse modulator 

due to the large electro-optic coefficient. An additional feature of ADP 

1s the availability of relatively large , good optical quality crystals 

at low cost. For these reasons ADP is used as the modulator material on 

this contract. 

2. Modulator Configuration 

A transverse modulator in ADP employs a 45OY cut crystal 

as shown in figure 15(a). For phase modulation of an incident linearly 

polarized wave the Y axis of the crystal is oriented either parallel 

or perpendicular to the polarization axis of the incident wave. The 

central ray of the light beam propagates through the crystal in the XZ 

plane at 45' with respect to the Z axis. The field is applied to the 

crystal parallel to the Y axis. Two modulator crystals were used during 

the experimental work, with length to thickness ratios of 8 and 4 

36 



I Y AXIS 

-Z AXIS 

X AXIS 

Figure 15A. 45O Y CUT ADP CRYSTAL 

._ 

‘_ 

y:.. _’ 

Figure 15B. MODULATOR CRYSTAL HOLDER 
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respectively. The crystals are cut and polished from 45' Y rod of dimen- 

sions: 3.2 mm. x 6.4 mm x 25.4 mm. Narrow dimension of the rod is along 

the Y axis. To prevent fogging of the polished surfaces, glass plates 

are applied to the end faces of the crystal with an index matching cement. 

The crystal is held between brass electrodes of dimensions 3.2 mm. x 6.4 

mm, x 25.4 mm. that are clamped in a plastic holder (see Figure 15b.). 

The entire assembly is mounted in a fixture that rotates about the propa- 

gation plane of the incident light beam. 

3. Modulator Performance 

Performance of the L/t = 8 modulator was measured in a 

resonant circuit configuration at 50 MHz modulation frequency and in an 

untuned circuit at baseband, (0 - 10 MHz) modulation frequencies. The 

L/t = 4 modulator was operated only in the resonant circuit configuration. 

The capacitance of the crystal and electrode structure is 

determined by the combination of the uniform and fringe fields. The 

uniform field capacitance may be calculated from the familiar parallel 

plate formula: 

C = A 
P ‘0’ d 

where s = 8.86 x lo-l2 in mks units 
0 

E = 16, dielectric constant of ADP 

A = contact area of the electrodes 

d = electrode separation 

38 

(90) 



II - 

For the L/t = 8 crystal this is: 

C = 8.86 x -6 
P 

lo-l2 x 16 x 3.2 x 25.4 x 10 -12 = 3.6 x 10 farads 
3.2 x 10-3 

The fringe field capacitance is most easily determined using a graphical 

approximation. Flux lines and equipotentials for a half section of the 

crystal are shown in Figure 16. The capacitance per unit length is given 

by 
CL=eoe Nf (91) 

N 
P 

where N f is the number of graphical flux divisions 

Np is the number of potential divisions. 

---- FLUX IAN ES EQL)~~OTEWTIALS 

Figure 16. GRAPHICAL ANALYSIS, FRINGE FIELD CAPACITANCE 
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The total fringe capacitance is CL times the crystal length. 

cf = 2 x 8.86 x lo-l2 x 16 x 0.5 x 25.4 x 10 -3 = 3.6 x lo-l2 farads 

Total capacitance is Ct = Cp + Cf = 7.2 x 10 -12 farads (92) 

This value of capacitance agrees very closely to a value determined by a 

bridge measurement on the crystal. 

A series tuned R, L, C resonant circuit is used to impress 

the 50 MHz modulation carrier on the ADP crystals as shown in Figure 17. 

- 

Figure 17. MODULATOR RESONANT CIRCUIT 

Parameter values for the L/t = 8 crystal are: C = 7.2 x 

lo-l2 farads, L. = 10 -6 
1 henries, R = 51 ohms. The resonant frequency 

is given by 

f 1 = 
m 112 

= 59.4 x lo6 Hertz 
2x (LiC) 

(93) 
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The actual resonant frequency was measured at 53 MHz, due apparently to 

distributed capacitance in the circuit. The Q of the resonant circuit 

is 

Q = 2srfmLi = 65 . (94) 
R 

The voltage across the crystal at the resonant frequency is 

Vi = 1 xc = EXc =QE 
Z 

(95) 

where E is the generator terminal voltage applied to the resonant circuit, 

xc the reactance of the crystal, Z the circuit impedance, and I the 

generator current. Figure 18 is a plot of crystal voltage and resistor 

power dissipation as a function of generator terminal voltage for several 

values of circuitry Q. The generator used to test the modulator, a 

Johnson-Viking transmitter, has a capability of driving the circuit at 

18 watts. From the chart, for a circuit Q of 6.5 the terminal voltage 

is 30 volts and the crystal voltage is 195 volts. Capacitance of the 

L/t = 4 crystal is 3.5 x 10 -12 farads. It resonates at 51 MHz with a 

2.8 x 10 -6 henry inductor. Circuit Q determined by (94) is 18. For a 

driving power of 1 watt, voltage across the load resistor is 7.8 volts. 

The crystal voltage is V = QE = 140 volts. The high value of Q gives 

large crystal voltages at reduced bandwidth. 

The voltage induced phase deviation in the transverse ADP 

modulator is given by equation (16) derived in section I.A.3. 
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Q= 10 Q = 6.5 
, Q=5 

= 6-5 Q=5 
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Figure 18. CRYSTAL VOLTAGE DISSIPATION AS A FUNCTION OF 
TERMINAL VOLTAGE 
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*#i = prql Vno3 4 
C 3 (16) 

Value of r4,1 at 0.546 microns is given in Figure 14. The ordinary index 

of refraction n = 1.53. 
0 

The phase deviation as a function of crystal 

voltage and L/t ratio is 

A@ = 1.01 x 10 -3 v 4 (96) 

For L/t = 8, and V = 195, A @ = 1.58 radians. Maximum frequency 

deviation at the 53 MHz modulation frequency is 

D =A$f = 84 MHz m (97) 

Evaluation of modulator performance depends upon successful demodulation. 

Test data for 50 MHz modulation is included in section 1I.B. under 

demodulator breadboard analysis. 

Use of the ADP crystals as baseband modulators, i.e. in 

the frequency range O-10 MHz; involves impressing the driving voltage 

directly upon the crystal as shown in Figure 19. The high gain broad- 

band amplifier required for this application is discussed in section 

Figure 19. BASEBAND MODULATOR 
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III. A. 3. Peak to peak drive voltages on the order of 200 volts are 

possible with the driver. This gives a phase deviation for the L/t = 8 

crystal of 1.61 radians. 

Thermal strain effects in the electro-optic crystals 

induce birefringence that degrades intensity modulator performance. 4 

In addition to this effect, 45' Y ADP has a natural birefringence in the 

XZ plane that is a function of crystal rotation about the propagation 

axis. These effects do not degrade performance of a system that uses 

a demodulator that is sensitive only to instantaneous frequency devia- 

tion. Heterodyne first detection followed by an amplifier, limiter, 

and frequency discriminator second detector is such a system. Since 

the thermally induced variations or mechanical vibration about the rota- 

tion axis occur at a low frequency, typically less than 100 Hertz, even 

for large phase deviations of several radians the instantaneous frequency 

deviation is small and filterable. Experience with the two ADP mdoulators 

confirms this: whereas intensity modulation is severely degraded by 

heating of the crystal; angle modulation shows no visible effect. The 

crystal may be rotated several degrees about the propagation axis, also 

with no visible effect upon angle modulation but with deleterious effect 

upon intensity modulation. 

4 Kaminow, I.P. "Strain Effects in Electra-optic Light Modulators" 
Applied Optics Vol. 3, Nr. 4, pp. 511-515. 
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The preceding discussion demonstrates the usefulness of a 

45' Y cut transverse ADP modulator in a variety of operational configura- 

tions. The L/t = 8 crystal is chosen as the optimum modulator for this 

contract due to the large phase deviation obtainable with moderate drive 

voltage. 

B. Demodulator Breadboards 

Optical breadboards of homodyne, optical discriminator, and 

heterodyne demodulators were constructed and tested to experimentally 

verify modulator performance. The test results confirm the conclusions 

drawn in the analytical study portion of the program; specifically, that 

the homodyne and optical discriminator techniques are amplitude noise 

sensitive. 

1. Homodyne 

Arrangement of the homodyne optical breadboard is shown in 

Figure 20. The interferometer assembly is mounted on 18 mm. thick alumi- 

num surface plate for stability. The beamsplitter is a mirror type with 

30% reflectance and has surfaces parallel to 20 seconds of arc. The 

interferometer mirrors are dielectric coated flats with maximum reflec- 

tivity at the laser wavelength and are mounted on holders with three point 

adjustment for ease of alignment. The reference beam mirror is mounted 

on a slide carriage, adjustable along the optical axis. The Pockels modu- 

lator is contained in a rotatable holder placed on the optical axis of 

the signal arm of the interferometer. Direction of rotation is about the 
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SURFACE PMTE f 
MIRRQR -----w--- ----- I 

Figure 20. HOMODYNE OPTICAL BREADBOARD 

optical axis. The laser is a Spectra Physics model 131 operated in the 

hemispherical mode without external beam forming optics. Power output 

is 0.5 milliwatt and beam divergence is less than 0.7 milliradians. The 

polarizer is a Nicol prism. The laser, polarizer, and interferometer 

are rigidly mounted to a 10 cm. wide, dual rail optical bench. The photo- 

multiplier detector is an RCA experimental type C70042 CP and is mounted 

on a separate stand at right angles to the optical bench. 

There are several important factors involved in the opera- 

tion of the homodyne demodulator. It is essential for good mixing action 

on the photodetector that the signal beam and the reference beam be 

exactly parallel and superimposed. The degree of alignment is checked 
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by noting the interference fringes between the two beams displayed on 

a white card at the detector location. Two or three wide dark fringes 

within the beam pattern indicate adequate spatial phasing of the two 

lasers. Relative time phase between the signal and reference waves is 

adjusted to n 2 , where n is a small integer. This is accomplished in 
2 

one, or a combination, of three ways; angular orientation of a quarter 

wave retardation plate in the signal arm, angular orientation of the 

naturally birefringent 45 degree Y cut ADP crystal, or adjustment of the 

reference beam optical path length. In the breadboard model there is 

sufficient vibration of the mirrors to give a time average of the optimum 

alignment conditions. 

A useful feature of the homodyne breadboard is the double 

pass modulator configuration. Both the 8 to 1 and 4 to 1 length to 

thickness ratio crystals were used in the assembled breadboard. Phase 

retardation for the 8 to 1 crystal at 5 watts drive is 1.84 radians; for 

the 4 to 1 crystal at 1 watt drive power the phase retardation is 1.12 

radians. Both values of phase shift exceed the conditions for linear 

modulation, i.e. K < < 1. For both modulators, detected signal amplitude 

in the breadboard system is insensitive to drive power variations due to 

saturation caused by the nonlinearity. 

Input to the photomultiplier detector is filtered both 

optically and spatially to prevent current saturation. Output of the 

detector is fed to a UHF receiver consisting of an APR-4 receiver unit 
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and a 541 Tektronix oscilloscope and/or a Polarad spectrum analyzer. The 

demodulated sine wave and frequency spectrum for 5 watts drive power at 

52 MHz on the 8 to 1 crystal are shown in Figure 21. A drift in wave 

amplitude is noticeable as the RF power heats the crystal. This is com- 

pensated by rotation of the crystal. Amplitude sensitivity of the 

homodyne system is demonstrated by inserting neutral density filters in 

the optical path between the interferometer and the detector. 

Experience with the homodyne demodulator breadboard 

demonstrates: sensitivity of the system to vibration through variations 

in the relative optical path length difference between the two arms of 

the interferometer, non-linear detection for large values of phase devia- 

tion, and sensitivity of the system to amplitude fluctuations in the 

transmitted beam. The first item is corrected by rigid mechanical design 

of the interferometer. The analysis performed during the analytical 

study predicts non-linear detection for large values of phase deviation, 

K; and the amplitude sensitivity of the system as demonstrated in the 

experimental model. 

2. Optical Discriminator 

A diagram of the optical discriminator breadboard is shown 

in Figure 22. The interferometer assembly is mounted on 18 mm. thick 

aluminum surface plate for mechanical rigidity. The maximum path length 

difference between the two arms is 60 cm.; and it is adjusted by motion 

of a mirror mounted on a slide carriage assembly. Separation of the 
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B - Spectrum Analyzer 

Center Frequency 50 MHz 
RF Drive 5 Watts 
L/t = 8 

A- 52 MHz Modulation 

ADP Crystal Drive 
Power - 5 Watts 
L/t = 8 

Figure 21. HOMODYNE DETECTED SIGNAL 
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- - - -- - -- - - -._- -__. - - 
SURFACE PLATE 

BEAMSPLITTER 

Figure 22. Figure 22. OPTICAL DISCRIMINATOR BREADBOARD OPTICAL DISCRIMINATOR BREADBOARD 

fixed mirror and the mirror beamsplitter, L1 is 5 cm; separation of the 

movable mirror and the beamsplitter, L2 (max.) = 35 cm., L2 (min.) = 2 cm. 

The.mirrors are dielectric coated flats with maximum reflectance at the 

laser wavelength. They are installed in three point adjustable mounts 

for ease of alignment. The mirror type beamsplitter is the same one 

used in the homodyne breadboard. The laser is a Spectra-Physics model 

131 operating in the hemispherical mode. The laser, Nicol prism 

polarizer, modulator, and interferometer are mounted on the 10 cm. 

optical bench. The photomultiplier detector, type C70042CP, is mounted 

on a separate stand perpendicular to the optical bench. A quarter wave 

plate is placed in the adjustable length interferometer arm on a rotatable 
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holder. The modulator may also be rotated about the optical axis. 

Several conditions must be satisfied for satisfactory 

operation of the optical discriminator. As in the case of homodyne 

detection the two beams must be exactly parallel and superimposed for 

good mixing action on the photomultiplier. Interference fringes are 

observed to determine optimum spatial phasing of the two beams. The 

condition fc 7 = II 
4' (equation 27)' is satisfied by rotation of the 

quarter wave plate. The other condition that must be satisfied is 

wm 
2 T < 2.8 for K < 0.28 or W, 7 < 4K for K> 0.28. Recall that 

these conditions are derived from the requirements for linear detection 

(equations 32 ff). The value for K is given by (96)' 

-3 & K=lO Vt (96) 

The L/t = 4 modulator crystal is used in this work, so K = 4 x 10m3V. 

The angular frequency for 51 MHz modulation is 

wm =2flfm = 3.2 x lo8 radians/set. (98) 

The maximum delay time, 7maxJ is: 

7 = 2 CL2 max - LJ = 2 x UYg sec. 
IMX 

C 

The minimum*delay time, 7minJ is: 

(99) 

T = 
min 2 C L2(min) - LJ = 1.25 x lo-' sec. (100) 

C 
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where c is the velocity of light, 3 x lo8 meter/set. 

Therefore: 

Wm7max = 0.64 radians 

1 
(101) 

Wm 'min = 0.4 radians 

In order to determine which condition on urn7 applies, it is necessary to 

computer K for the drive voltages used. Data is taken at three input 

power levels: 0.5, 2, & 5 watts. Voltage across the crystal with a Q 

of 18 for a circuit R of 50 ohms is 90, 180, and 284 volts respectively. 

The corresponding K's are shown in Figure 23. 

Drive Power 

(a) 0.5 watts 

(b) 2.0 watts 

(c) 5.0 watts 

Applied Voltage 
on Crystal 

Retardation 
K 

90 volts 0.36 2.18 

180 volts 0.72 1.09 

284 volts 1.14 0.704 

Figure 23. PARAMETERS FOR L/t = 4 Crystal in Optical Discriminator 

In each case K> 0.28, therefore wrn 7 c4i must apply for linear detection. 

In each case this condition is satisfied for all values of wrn 7. Figure 

24 shows the detected sine wave for 52 MHz modulation at the three values 

of drive power for three values of wm 7. The receiver is an APR-4 receiver 

unit in combination with 541 oscilloscope. 'The data shows a trend toward 

increased output amplitude proportional to drive power and wrn7 as predicted 

by the analysis' (equation 34); although comparison of specific data is 
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0.5 Watts 2 Watts 5 Watts 
K = 0.36 K = 0.72 K = 1.14 

Minimum Path Length u.1~7 =.0.4 

Mean Path Length wrn7 = 0.52 

Maximum Path Length UI~T = 0.64 

Figure 24. OPTICAL DISCRIMINATOR DETECTED SIGNAL 



not in agreement. This inconsistency is due to instability in the bread- 

board caused by mechanical vibration of the mirror mounts. Also the 

range of wm7 is limited by the mechanical layout on the surface plate. 

Sensitivity. of the optical discriminator to amplitude variations is 

observed by inserting neutral density filters in the beam between the 

modulator and beamsplitter. No attempt was made to observe the AM rejec- 

tion at the modulation frequency, w,. 

3. Heterodyne 

Arrangement of the optical breadboard for heterodyne 

detection is shown in Figure 25. 

--m-- ------- 

I 

SURFACE PI.hTE 
APR-4 

CoNVERTE t 

ADP CRYSTAL I 4 
SP-119 
LASER I l\. + PMJ 

BEAM COMBlhlER f 
I 
I 

Figure 25 HETERODYNE OPTICAL BREADBOARD 

IMK III AMP 

The transmitter unit consists of a signal laser, reference 

laser, Pockels modulator, and right angle prism beam combiner. The lasers 

are Spectra-Physics model 119, chosen for single mode and stable frequency 

operation. The temporal coherence of the output radiation is achieved by 
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use of a stabilized optical resonator of such short length that only a 

single mode can be sustained. The plasma tube is mounted in an invar 

resonator structure having bi-metallic temperature compensation. One of 

the dielectric resonator mirrors is mounted on a piezo-electric element 

which is voltage controlled for mirror spacing with resultant control of 

laser frequency. A photodetector and servo controller permit locking of 

the mirror drive voltage to the Lamb dip region of the lasing mode. The 

resonator and plasma tube are housed in a temperature controlled oven for 

thermal stability. Surrounding the oven is a mu-metal cover which shields 

the invar resonator from magnetostrictive modulation effects caused by 

stray external magnetic fields. These lasers are servo locked to a fixed 

offset difference frequency of 200-300 MHz. The phase modulation on the 

signal carrier is transferred to the difference frequency upon square 

law detection of the two signals at the receiver. 

The breadboard receiver unit consists of a C70042CP photo- 

multiplier detector, APR-4 tuning unit modified to a 60 MHz intermediate 

frequency, and a LEL model INK amplifier, limiter, discriminator unit. 

The phase modulated difference frequency is converted down to the 

intermediate frequency of the FM receiver unit and subsequently detected. 

In this experimental work a subcarrier modulation in the range O-2 MHz is 

used in order to stay within the 3 db bandwidth of the receiver units. 

Successful results obtained with the experimental model i.e. mixing of 

the two laser frequencies to obtain the difference frequency, and detec- 

tion of subcarrier modulation, led to an early decision to implement this 
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heterodyne detection method in the experimental breadboard. Detailed 

discussion therefore of the experimental data is included in following 

sections of this report. 

III. BREADBOARD SYSTEM 

A. Hardware Description 

A block diagram of the transmitted reference heterodyne laser 

communications system is shown in Figure 26. There are three basic 

elements of the system: the transmitter unit, the receiver unit, and the 

modulation-demodulation electronics. Shown in the diagram is the implemen- 

tation for single frequency subcarrier modulation. Operation of the system 

is identical to that of the experimental system described in section II.B.3. 

1. Transmitter Unit 

Photographic views of the transmitter unit are shown in 

Figure 27. Picture A is an exterior view showing the unit cover, colli- 

mating telescope, and 7X spotting scope. Picture B is an interior view 

showing the arrangement of the optical components: lasers, modulators, 

beam combiner, and eyelens of the collimating telescope. Picture C shows 

the transmitter unit mounted on the tripod at one of the experimental test 

sites. The laser power supplies with integral servo controllers are placed 

on the tripod base plate. The tripod is adjustable 360 degrees in aximuth 

and approximately 30 degrees in elevation. Picture D shows the detail of 

the mounting adjustment for the lasers. 

The baseplate for the transmitter unit is fabricated from 
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C-Tripod Assembly 

B-Transmitter Unit 

A-Optical Layout D-Adjustments 

Figure 27. BREADBOARD MODEL - TRANSMITTER UNIT 
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18 mm. thick aluminum surface plate. This is a strain relieved metal that 

resists warping and bending. The lasers are mounted to carrier plates on 

three thumbscrew legs that permit adjustment of laser height and angle of 

the case with respect to the baseplate. The carrier plates slide on the 

baseplate surface and are oriented by three thumbscrew adjustments that 

allow translation of the laser and angular adjustment in the plane of the 

baseplate. Thumbscrew stops are provided for locking the vertical and 

horizontal adjustments and in addition, two hold down clamps are provided 

on the carrier plate at the front and rear of the case. Figure 27d shows 

the constructional detail of a horizontal adjuster and the hold down clamp. 

This method of mounting the lasers provides a versatile arrangement for 

alignment of the beams with respect to each other and the external optical 

components. The locks assure that alignment is maintained during normal 

handling of the transmitter unit. Experience with this mounting arrange- 

ment has proven it to be adequate for all adjustment procedures. 

Details of the modulator holder are shown previously in 

figure 15 b. The ADP crystal is wedged between two brass electrodes. A 

small detent is machined on the back of the electrodes for keying with a 

spring loaded ball check that is screwed into the plastic half shell. The 

ball check maintains compression on the crystal through the clamping action 

of the electrodes. The crystal can be rotated 100 degrees about the optical 

axis when mounted in the holder. Electrical contact is made to the elec- 

trodes on the ends opposite those shown in the picture. Twisted pair leads 
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are soldered directly to the end surfaces and bent aside to prevent inter- 

ference with the laser beam. 

Beam divergence of the model 119 laser without the colli- 

mating telescope is 10 milliradians, with the collimating telescope it is 

less than 0.3 milliradian. Both the signal carrier and local oscillator 

lasers are used with the integral collimating optics. A secondary colli- 

mating telescope is provided for spreading the combined output to one 

milliradian beam divergence. One milliradian gives a one meter spot 

size at one kilometer. The pointing precision required for a one milli- 

radian beam divergence is 0.5 millimeter deflection at the end of a meter 

long lever arm at the transmitter. This gives a shift of one half the 

beam diameter at the target. The double collimator optics configuration 

is chosen, so that highly collimated beams traverse the optical paths in 

the interferometer; thereby minimizing optics lasers in the modulator 

and insuring precise beam alignment. The secondary beam collimator is 

a simple Galilean telescope. An exaggerated ray diagram is shown in 

Figure 28. The parameters are defined as follows: dl is the diameter 

of the objective lens, d2 is the diameter of the beam at range 7, x1 is 

the,object distance, and x1 is the image distance. By similar triangles: 

+ x1' 
I 

7 x1 = 
d2 

(102a) 
-a-i- 

therefore: 
1 '4 x.1 = - (102b) 

d2-dl 

60 



Figure 28. SECONDARY BEAM COLLIMATOR RAY DIAGRAM 

From the lens maker's formula: 

1, 
x1 ++ = $1 x1 

where f 1 is the focal length of the objective lens. Therefore: 

I 

x1 ? 
fl Xl 

x1 - fl 

(103a) 

(103b) 

Combining (102b) and (103b) and solving for xl: 

x1 = 
c fl dl 

(104) 
rdl - fl W2-dl> 

Substituting design values for the breadboard system: r = 103m, fl = 

-0.401m, dl = 0.044 m, d2 = lm: x1 = -0.397 meter. Spacing between the 

eyelens and the objective lens is 1 x1( p lus the focal length of the 
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eyelens, f2* Let f2 = 0.047 m and: 

6 = 1 X1 1 + f2 = 0.444 m (105) 

A fine screw thread is provided on the eyelens mount to permit adjustment 

of 6 to the optimum value given by (105). 

Alignment of the optical components in the transmitter unit 

is essential for good spatial mixing of the laser beams. The following 

alignment procedure is recommended for optimum performance. Adjust each 

laser collimating lens individually for minimum spot size on a white card 

at 30 meters with all optical components removed from the transmitter unit, 

i.e. modulator, beam combiner, and secondary collimator. Install the 

beam combiner and align the carrier laser beam with respect to the base- 

plate and the center of the circular exit aperture. Centerline of all 

optics is 10.2 cm above the baseplate. Align the local oscillator laser 

to the signal carrier laser by superimposing the L.O. laser beam on the 

signal laser beam on a white card at 5 and 30 meters respectively. This 

may be done simultaneously with the right angle combiner. Install the 

modulator in the signal carrier laser beam path. The crystal is wedge 

shaped i.e. the end faces are not parallel, so the signal carrier beam 

will deflect away from the L.O. beam. With the crystal rotated in the 

holder to operating position, adjust the signal carrier laser to the 

center of the modulator crystal and superimpose it on the reference 

beam at 5 and 30 meters. Install the secondary collimator if desired 

and the system is aligned. Optimum mixing should be observed anywhere 
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Figure 29. BREADBOARD MODEL - RECEIVER UNIT 
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in the propagation path of the transmitter unit. 

2. Receiver Unit 

An overall view of the receiver unit is shown in Figure 29A. 

It consists of a Newtonian telescope, 7X spotting scope, and a receiver 

box. The telescope primary lens is an f/10, 10.8 cm diameter spherical 

mirror. It is installed on a conventional three point mounting for ease 

of alignment. The secondary mirror (mirror diagonal) is mounted on a 

single, vertical post near the entrance to the tube. Interior details of 

the receiver box are shown in Figure 29B. It contains a .field stop for 

limiting the field of view of the receiver, the photomultiplier assembly 

including a narrow band spectral filter, the converter chassis and the IF 

amplifier chassis containing the limiter, discriminator, and video 

amplifier. 

Geometry of the receiver optics is shown in Figure 30. 
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Figure 30. RECEIVER OPTICS GEOMETRY 

64 



The receiver beam angle is given by 

8 
-1 = 2 tan d4 

ret T-q 
(106) 

where d4 is the diameter of the circular field stop and f3 is the focal 

length of the primary mirror. Design value for 8 is a milliradian and ret 

since f 3 = 114 cm. 

d4 ='recf3 = 1.14 millimeters 

An adjustable iris diaphragm is used as the field stop in order to obtain 

the design beam width as well as larger fields of view. The secondary 

mirror is an elliptical diagonal of dimensions: 27 mm x 38 mm x 6.4 mm 

thick. Blockage due to the beam diagonal is given by the projection of 

the long dimension normal to the incident beam. The projected dimension 

is given by 

Y' = y cos (45O) = 27 mm. (108) 

The effective collecting area of the mirror is given by 

A 2 12 2 
eff = * (d3 - y ) = 89.4 cm 

where d 3 is the diameter of the primary mirror. The effective diameter is 

that which gives Aeff and is d3' = 10.6 cm. It is apparent that the 

diagonal blocks very little of the lens aperture. The diagonal may be 

placed anywhere that it does not vignette the converging beam. By similar 

triangles the maximum allowable distance from the center of the beam 
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diagonal to the plane of the field stop is given by: 

X max = 
Y’ f 3 = 27.9 cm. (110) 

d3 

Since the field of view is very narrow, this holds for all beam angles. 

The spectral filter used on the photomultiplier is designed 

to the following specifications: bandpass 2.5 2, plus 1 z minus 0, at 
0 

6328 i, plus 1 A minus 0, transmission 35% minimum, blocked for S-20 

response; diameter 2.54 cm. The filter is evaluated by mounting it on a 

rotatable holder and measuring the transmission characteristics for the 
0 

6328 A HeNe laser line. Maximum transmission is measured to be 56% at an 

incident beam angle of 2.5 degrees with respect to the normal. The filter 

is mounted to the photomultiplier holder with a wedge spacer inserted to 

give a 2.5 degree angle of incidence for the transmitted beam. The 

transmission measurements are made at room temperature and vary at dif- 

ferent temperatures. 

The photomultiplier detector is an RCA experimental type 

C70042CP. It is a ten stage, ruggedized, head-on type tube with S-20 

response, curved photocathode, and internally potted dynode bleeder. 

Current gain at minus 1500 volts anode potential is 4 x 104, at minus 

2000 volts it is 3.3 x 105. The tube has low distributed anode circuit 

capacity and small transit time fluctuations for 500 MHz response. 

The converter is an LEL model RMP-l-250-70-60-08 receiver 

module. It consists of an RF preamplifier unit and a converter unit. 

The RF bandwidth is 70 MHz centered at 250 MHz. The intermediate frequency 
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.is 60 MHz and the IF bandwidth is 8 MHz. Converter gain is > 30 db and 

noise figure at 256 MHz is 6.3 db. Impedances are 50 ohms. The IF 

amplifier is an LEL model IMK-l-60-10-50. Center frequency of the IF 

amplifier is 60 MHz and the 3 db bandwidth is 10 MHz. IF gain is 84 

db. The discriminator peak to peak bandwidth is 15 MHz. Video ampli- 

fier gain is 23 db. Noise figure of the amplifier is 2.6 db. Impedances 

are 50 ohms. 

3. Modulation Demodulation Electronics 

The modulator electronics consists basically of a Hewlett- 

Packard 606 signal generator, a Tektronix 514 video amplifier, and a 

driver amplifier. A schematic of the driver amplifier is shown in 

Figure 31. This arrangement permits subcarrier modulation from below 

1 MHz to approximately 10 MHz on the light beam. The overall frequency 

response drops off above 6 MHz. The driver amplifier consists of a 

cathode follower, buffer input stage to obtain a good impedance match 

between the pre-driver amplifier and the final. The final driver stage 

consists of two 4Cx250B power tetrodes in parallel operating as a class 

B amplifier. Gain of the modulator driver is 20 db. Nominal peak to 

peak voltage input from the 514 amplifier is 50 volts, so the peak 

swing on the modulator crystal is 500 volts. Interlock relays are 

installed in the unit, as shown in figure 32, to provide.proper 

sequencing of the tube potentials. The OFF-ON switch applies filament 

voltage and grid bias to the tubes, activates the air blower, and applies 

67 



I zoov, ZOOM4 

/ 1, \ B-w 
3- 

+2sov --SW 

I? r 2 
,5 

,- - “30 ‘V 

Figure 31. ~Rnm3 AMPLIFIER SCHEMATIC 



AT IOA 

I I I 

Figure 32. DRIVER AMPLIFIER CONTROLS 

69 



A 

B 

Figure 33. MODULATION ELECTRONICS 
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voltage to the screen interlock switch. The PLATE switch activates the 

plate relay which applies B+ voltages to the chassis. It also closes the 

interlock switch in the screen relay circuit. The SCREEN switch applies 

voltage to the screen relay, which supplies screen voltage to the tubes. 

Associated with each switch on the front panel is a pilot lamp that 

indicates the ON position. A photograph of the driver amplifier chassis 

is shown in Figure 33A. Power required for the amplifier is: 6 Vat at 

9 amps filament supply, 350 Vdc at 100 ma screen supply, 1000 Vdc at 700 

ma plate supply, and -30 Vdc grid bias supply. The filament and plate 

relays operate from ac line voltage. 

A block diagram of the modulation system for broadband 

video modulation is shown in Figure 34. 

I SUBCARRIER 
OscrLlAroR 

Figure 34~ BROADBAND VIDEO MODULATION 
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The signal source is a 3 MHz bandwidth, vidicon television camera. It is 

necessary to translate the video signal up in frequency to avoid the laser 

servo noise spectrum in the detector output. This noise problem is dis- 

cussed in detail in Section III.C.l. A Hewlett-Packard model 10514A 

diode bridge mixer is used to amplitude modulate the video signal on the 

subcarrier. Input impedance of the mixer is 50 ohms and maximum drive 

current in the X port is 40 ma. An amplifier is required to obtain 

optimum drive into the mixer. A schematic diagram of the pre-mixer is 

shown in Figure 35. Figure 33B is a photograph of the chassis showing 

the input filter and the bridge mixer. Input to the modulator driver 

in the broadband video mode of operation is nominally 30 volts peak to 

peak, so the peak drive on the ADP crystal is 300 volts. Voltage swing 

of the individual video frequency components depends upon the depth of 

modulation of the video on the subcarrier. 

The demodulation electronics follows the FM discriminator 

and video amplifier of the receiver IF amplifier. The signal at this 

point, ignoring noise, is simply the subcarrier or in the broadband 

modulation case, the subcarrier plus sidebands. In the wideband case 

the detected waveform is first compensated by passing it through a low 

pass filter. The waveform is then envelope detected. The detected video 

signal is amplified and applied to a CRT monitor for display purposes. 
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B. Performance Analysis 

1. Signal Considerations 

Signal power received at the receiver in a one-way link is 

given by 

P ret 
ret = pm eear A 

ret (111) 
A trans 

where a is the atmospheric attenuation factor, A is the area of the ret 
receiver aperture, and A trans is the area of the transmitted beam in the 

plane of the receiver. Assume that a < < 1, and that A >A trans ret' 
Substituting, (111) becomes: 

'2 
P ret = 'md3 ret 2 2 

r eb 

(112) 

where eb is the transmitter beam divergence. The expression does not 

account for optics losses in either the receiver or the transmitter. 

Figure 36 shows Prec 
ret 

for ranges from 1 to 5 kilometers assuming d; = 

10.6 cm, Pm = 10 -4 watts, and 8 b 
= 10-3 radians. 

Range (rj 
meters 

103 

2 x 103 
3 x lo3 
4 x 103 

5 x lo3 

Received Signal Power (PE,","> 
Watts 

1.12 x 10 -6 

2.8 x 1O-7 

1.24 x 1O-7 
7.01 x 10 -8 

4.48 x 1O-8 

Figure 36. RECEIVED SIGNAL POWER AS A FUNCTION OF RANGE 
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Note that if the secondary collimator is removed, 8; = 0.3 x 1o-3 radians, 

and P 'ret 
ret = 10 P=z. 

Optics losses in the transmitter are due to the collimator 

lens elements, the right angle prism beam combiner, and the modulator 

crystal. Lens element losses are ignored because the laser output is 

normally measured with the collimator in place. The beam combiner causes 

a loss of one half of the available laser power or 3 db. A special prism 

can be used as a beam combiner in an operational system to eliminate this 

power loss. The modulator loss, since this is a phase modulator is 

simply the light attenuation through the crystal. This is nominally 

3 db. Since the output of the model 119 laser is usually greater than 

100 microwatts, the assumption that Pm = 10 -4 seems valid even consider- 

ing the transmitter optics losses. As the laser tube ages, of course, 

Pm reduces proportionately. 

The receiver optics losses are due to the reflection loss 

of the primary and secondary mirrors and the transmission loss of the 

narrow band filter. These losses are approximately 4 db. It is noted 

later that receiver losses do not affect performance of background limited 

systems, .since the background noise power is reduced proportionately to 

the signal power. 

The assumption that Q r ~1 is not necessarily valid at 

relatively long ranges even under good seeing conditions. Watkins5 

5 Watkins, M. C. "Study of Laser Application to Velocity Measuring 
System", AA1 Corporation, Report ER-4131, AF 29(600)-4136. Sept. 1965. 
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reports that one way atmospheric attenuation losses at 0.633 microns are 

6 db per kilometer or less, 95% of the time. This worst case number 

corresponds to an a; = 1.39 x 10 -3 meter -1 , or 720 meter air. Since 

visible range is on the order of several attenuation lengths6, visibility 

in this worst case is limited to 2-4 kilometers. In figure 37 the 

received signal power is given as a function of range assuming 3 kilometer 

air, cr = 0.3 x 1o-3 -1 meter . The signal loss compared to the values 

in Figure 36 is also given. 

Range (x-1 Received Signal Power (Pfzz) Signal Loss 
Meters Watts db 

lo3 8.26 x 1O-7 -1.3 

2 x lo3 1.54 x 1o-7 -2.6 

3 x lo3 5.05 x 10 -8 -3.9 

4 x lo3 2.11 x 10 -8 -5.2 

5 x lo3 9.99 x 1o-g -6.5 

Figure 37. RECEIVED SIGNAL POWER FOR 3 KILOMETER AIR 

The signal loss in this case is 1.3 db per kilometer and becomes 

appreciable at the maximum ranges. Visibility under these conditions 

is approximately 10 kilometers. Conclusion to be drawn from this 

discussion is that atmospheric attenuation can be a significant factor 

in signal degradation with range. 

6 Middleton, W.E.K. "Vision Through the Atmosphere" 
University of Toronto Press, 1958. 
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2. Noise Considerations 

Consider noise in the receiver due to a white noise back- 

ground of radiance, Irad. The received noise power. is given by 

No = 'rad ' Arec q (113) 

where W is the receiver optical bandwidth and $ is receiver solid angle. 

Substituting for Arec and $, (113) becomes: 

n2 '2 N =yd3 ‘fkzc ‘rad 0 (114) 

Data on Irad 7 is tabulated by several sources , the values in figure 38 

are typical. 

Source I rad tp w/cm2/ CL/ sr) 

Direct Sunlight 3 x log 

Sunlight Cloud 2 x lo4 

Sunlight Earth 1.5 x lo4 

Day Sky 2 x lo3 

Direct Moonlight 4 x lo2 

Figure 38. RADIANCE AT 0.633 MICRONS FOR SELECTED SOURCES 

7: LaRocca "Fundamentals of Infrared Technology" 
University of Michigan, 1964 
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As a worst case example, consider the breadboard system working against 

a sunlit earth background: NL = 2.68 x 10-l' watts. The additive 

background noise is attenuated by the receiver optics losses, so the 

signal-to-noise ratio may be calculated using the numbers in Figure 36, 

assuming no atmospheric attenuation. At 5 kilometers for example: 

( + )background = P;zz = 1.67 x lo2 = 22 db. 
1 

NO 

This becomes 15.5 db for 3 kilometer air. It is apparent that the 

breadboard system is not background noise limited. 

Performance of the photomultiplier involves three sources 

of noise: noise due to the dark emission current of the photocathode, 

noise due to the average signal photocurrent, and thermal noise generated 

in the load resistance. The expression for the ratio of signal current 

to tube dark current is8 

where 

(tli = ik 
d 

c 2e id (1 + -& B)]1'2 

ik is the average signal cathode photo current 

e is the electronic charge, 1.6 x 10 -19 coulombs. 

(115) 

id is the tube dark current 

m is the secondary emission ratio per stage, M 4 

G is a statistical factor = 1.54 

B is the receiver bandwidth 

8 "Phototubes and Photocells" RCA Technical Manual PT-60, Lancaster, Pa. 
1963, pp. 55 ff. 
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The expression for the ratio of signal current to noise in signal current 

(shot noise) is similar with i d replaced by ik, Therefore: 

ik 112 
( i) =[ 

ik 2 e(l + 
1 

(116) 

Note that the signal to the shot noise ratio varies directly as the 

square root of the average signal current whereas the signal to dark 

current ratio is proportional to the average signal current directly. 

For ik > id , ( N s, ik is the smaller quantity. In the experimental 

model this condition applies and shot noise is the predominant noise 

source. For the optimum value of tube lead resistance, the rms Johnson 

noise voltage is equal to the dark current noise voltage. Therefore 

thermal noise may be ignored with respect to shot noise also. 

The average photocathode signal current is 

ret ik =' Prec T @ (117) 

where T is the transmission factor of the receiver optics and @ is the 

cathode sensitivity. The S-20 photocathode has a radiant sensitivitiy 

of 2.3 x 10 -2 amp/watt at 0.633 microns. Bandwidth of the RMP-1 con- 

verter input stage is 70 MHz. From an earlier discussion T = 0.4 

( ~ >i is given in Figure 39 for several ranges using values of 
k 

P ret ret from Figure 36. This is the signal to noise ratio at the optical 

detector. 
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Range 
Meters 

lo3 

2 x lo3 

3 x lo3 

4 x lo3 

5 x lo3 

CS N )ik 
(db) 

12.4 

9.4 

7.6 

6.4 

5.4 

Figure 39. DETECTOR NOISE LIMITED S/N AS A FUNCTION OF RANGE 

These S/N ratios are considerably smaller than the worst case background 

(S/N) = 22 db; demonstrating that the breadboard system is detector 

noise limited. 

C. Experimental Data 

1. Servo Noise 

The Model 119 lasers are locked to the Lamb dip region 

of the mode pattern by a servo system. A 5 KHz modulation is applied 

to the piezoelectric mirror mount that causes amplitude modulation of 

the laser output depending upon the shape of the mode pattern at the 

operating point. This AM'ing of the beam is detected by a photocell, 

amplified and compared in a phase comparator with the modulating wave- 

form. An error signal isgenerated and applied to the mirror to correct 

for mirror drift. 
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A noise spectrum is generated in the receiver output of the 

breadboard model due to the servo noise. The mirror motion causes FM'ing 

of the beam as well as the amplitude modulation. The differnce frequency 

contains the beat of the two servo noise spectra. There are line 

spectra at 5, 10 and 15 KHz. The noise spectrum peaks below 1 KHz. 

This noise prevents use of baseband modulation with the lasers in the 

servo lock position. Experience has shown that after 4 to 6 hours 

operation the lasers stabilize and servo lock operation is not required 

to keep the difference frequency within the bandpass of the receiver. 

2. Subcarrier Modulation 

The system was operated over a 300 meter link to demonstrate 

qualitatively system performance. Subcarrier modulation at 2-4 MHz is 

detected with excellent signal to noise when the lasers are stabilized. 

Narrow band filters are used to reduce receiver bandwidth. Drive 

voltage on the modulator crystal is nominally 150 volts. No quantita- 

tive measurements of system performance were made during this phase of 

the contract. 

3. Video Modulation 

In the case of video modulation signal quality is very 

poor. Frequency stability of the laser beat was not adequate for 

optimum tuning of the receiver in the unlocked servo condition. In 

the servo lock condition the noise spreads the difference frequency 

spectrum over 20 MHz at a low frequency rate so that signal is lost at 
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the fixed tuned receiver. Performance will be measurably improved by 

reducing servo noise and incorporating a tracking local oscillator in 

the receiver. These improvements will permit quantitative evaluation 

of breadboard model performance. 
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